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1. Introduction

Uber was founded and started operations in San Francisco’s Bay Area in 2010; at this time, the

company had a more luxurious business model (now called Uber Black) than regular cabs. How-

ever, in 2012 it allowed private car owners to provide ride services similar to traditional taxis with

Uber-X. After San Francisco, the company started operations in Chicago, New York City, Boston,

Washington DC, and Seattle in 2011 and Phoenix, Dallas, Philadelphia, Denver, Atlanta, Min-

neapolis, and Los Angeles in 2012. By 2017, it was present in more than nine hundred counties

across the United States (US).

Uber disrupted the urban transportation system, creating a world of convenience and changing

the way people move in urban environments. Instead of waiting on the streets or phone calling

a taxi, people could now use an online platform to book an Uber and watch the car’s progress

towards the pick-up location. Among the main advantages of Uber vs. traditional taxi services is

that it allows the user to track the trip, pay electronically, rate the journey, and know the ride fare

beforehand. Currently, the company has operations in more than eighty-five countries across seven

hundred and fifty metropolitan areas (Uber, 2021).

Although previous studies on the effects of digital matching technologies for ride-hailing services

like Uber had examined its impact on the transportation sector (e.g. Clewlow and Mishra, 2017;

Keating, 2019; Schaller, 2017) the existing literature has yet to understand its effects on overall

air quality. In this study, we fill this gap by looking at the impact of Uber on US cities’ air

quality.1 Furthermore, we also contribute to the broader literature on the relationship between the

transportation sector and air pollution.2

1We define urban agglomerations as all counties part of metropolitan statistical areas (MSA). MSAs are
urban areas with at least one urbanized region of more than 50,000 inhabitants (U.S. Census Bureau,
2020).

2Notably, most studies looking at the relationship between the transportation sector and air pollution
primarily focus on the effects of public transit infrastructure (e.g. Lalive et al., 2018) or policy mechanisms
for regulating road traffic (e.g. Sarmiento et al., 2021). And even when they look at the impact of disruptive
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Studying the air quality effects of Uber is highly relevant as local politicians constantly debate

its consequences on air quality, congestion, and social welfare. For instance, in 2015, New York

City’s mayor Bill de Blasio proposed a new bill to stop the company’s growth. Among de Blasio’s

main arguments was an increase in traffic and its associated air quality effect. In a 2019 opinion

article, the mayor wrote, “Uber added to our pollution, worsened our air quality, and crowded out

bus riders, pedestrians, and cyclists. Traffic speeds in midtown fell to just above 4 miles per hour

— barely faster than walking” (Bill de Blassio, 2019). Notably, this discussion is not unique to

New York City, with several other politicians in cities like London, Milan, and Los Angeles also

considering limiting Uber because of air pollution concerns.3

Identifying the effect of Uber on air quality is challenging because of the complexities of the

transportation network and the interaction of air pollutants in the lower atmosphere. For instance,

there are three possible mechanisms through which Uber’s effects on the transportation system can

affect air quality; scale, substitution, and complementarity. The scale effect refers to an increase in

the number of cars in the street. For instance, Clewlow and Mishra (2017) and Ward et al. (2021b)

provide evidence of an increase in total vehicle mileage after the introduction of ride-hailing services

across seven major US cities.4 The substitution effect refers to replacing alternative transport

modes like private vehicles, taxis, and subways with Uber rides. Its impact on air quality depends

on the transportation mode that ride-hailing replaces. If Uber substitutes public transport, the

introduction of Uber could potentially worsen air quality. For example, Clewlow and Mishra (2017)

find evidence that the introduction of Uber to major US cities results in a 6% drop in the use of

public transport. However, if instead of substituting public transportation, Uber replaces old taxis

technological innovations, they often only concentrate on the environmental effects of electrification (e.g.
Holland et al., 2016).

3For example, in 2018, London’s mayor Sadiq Khan tried to pass legislation limiting the number of Uber
drivers because of social, pollution, and congestion concerns.

4It is relevant to notice that the transportation literature is still not conclusive on the effects of Uber in
vehicle ownership and transit. For instance, several studies find opposite results to Ward et al. (2021b)
(see Yan et al., 2019; Feigon and Murphy, 2016; Hampshire et al., 2017).
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or private vehicles, it can also improve air quality (Keating, 2019). Finally, the complementarity

effect suggests that Uber can decrease air pollution by facilitating access to public transportation

hubs, overcoming the last mile problem of public transit (Rayle et al., 2014).

Our study does not attempt to identify these mechanisms as they depend on each city’s trans-

portation infrastructure, commuting patterns, and income elasticity. For instance, overcoming the

last mile problem in urban areas with good public transportation like New York City is easier than

in less robust areas like Los Angeles, Houston, or Dallas. Still, we run some robustness exercises

and show countrywide evidence of an increase in the number of available cars per household (scale

effect) and an increment of persons commuting to work with public transport (complementarity

effect).5 Furthermore, figure 1 of the appendix provides descriptive evidence of a substitution effect

between taxis and Ubers in New York City and Chicago.

An additional concern is that the relationship between air pollutants is not always straightfor-

ward. At times, increases in one particle do not necessarily translate to worse air quality. For

instance, there is often an inverse relationship between ground-level ozone (O3) and traffic-related

contaminants like nitrogen dioxides (NO2); in dense traffic areas with significant emissions of NO2,

O3 values are lower than in rural regions with less traffic. This inverse relationship exists because,

at high concentrations, NO2 degrades O3 back into oxygen (O2). Thus, even if the scale effect

dominates and there is an increase in traffic-related NO2, the impact of higher NO2 may decrease

O3, making the overall effect on air quality challenging to assess by only looking at its effects on

one particle.

To provide a general assessment of Uber’s effect on air quality and avoid capturing pollutant-

5In table A.1 of the appendix, we run our empirical design on yearly estimates of the number of available
household vehicles per county from the American Community Survey. Unsurprisingly, results show that
the introduction of Uber increases the number of available cars per household in the US. Also, in table
A.1 we estimate the effect on the share of persons commuting to work with data from the American
Community Survey. The results provide evidence of complementarities through increases in the number
of persons reporting work commutes with public transit.
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specific consequences, we concentrate on its impact on the Environmental Protection Agency

(EPA)’s air quality index (AQI). The AQI proxies air quality by transforming the concentration

of criteria pollutants into a single scale running between 0 and 500 units.6 At each point in time,

the AQI is the maximum across all measured particles in that county. An AQI value of 100 units

corresponds to both the air quality standard for that particle and the threshold between moderate

and dangerous levels of exposure for sensitive groups (EPA, 2021a). Thus, even if Uber affects the

concentration of each criteria contaminant differently, the AQI allow us to recover a more holistic

assessment of its air quality effects.

We infer the causal effect of Uber on the AQI by leveraging the spatio-temporal variation in

its roll-out with difference-in-differences (DD) designs. In layman’s terms, we compare the value

of the AQI on treated and non-treated demarcations before and after Uber started operations.

The identification assumption is that conditional on observables, the introduction date of Uber is

orthogonal to unobserved determinants of air quality. Furthermore, current developments in the DD

literature provide evidence that in the presence of staggered and dynamic treatment effects, two-way

fixed effects difference-in-differences (TWFE-DD) can generate bias estimates of the true average

treatment effect on the treated (ATT) (De Chaisemartin and d’Haultfoeuille, 2020; Goodman-

Bacon, 2021).7 We consider this potential source of bias with Callaway and Sant’Anna’s difference-

in-differences (CS-DD) methodology, allowing us to estimate and flexibly aggregate group-time

average treatment effects across multiple groups and time periods (Callaway and Sant’Anna, 2020).

Results show that the introduction of Uber improves air quality. In the preferred specification,

Uber decreases the maximum yearly value of the AQI by 10.69 units. This reduction translates to a

6The clean air act requires the EPA to set North American Air Quality Standards (NAAQS) for six common
air pollutants often referred to as ”criteria air pollutants.” These are, ground-level ozone (O3), coarse
particulate matter (PM10), fine particulate matter (PM25), carbon monoxide (CO), sulfur dioxides (SO2),
and nitrogen dioxides (NO2).

7In figure 2 of the appendix, we show that this bias can potentially affect our estimates with the Goodman-
bacon decomposition.
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7.3% drop concerning pre-treatment values. Concerning the number of days of bad air quality, i.e.,

days with AQI values higher than 100 units, we find that Uber decreases their average number by

2.53. Reassuringly, results are robust to three different definitions of control counties, i.e., never and

still not treated, never treated, and still not treated. Looking at heterogeneous seasonal effects, we

provide evidence that the air quality improvement is more significant during the summer, suggesting

that the air quality improvement may come from reductions in the concentration of O3. We confirm

this by running contaminant-specific regressions. As expected, O3 is the only contaminant that

reports significant reductions in its AQI after the introduction of Uber.8

We perform several robustness tests to check the stability of our results to different samples and

econometric designs. First, we examine the effect of Uber across each US Census Region. Results

confirm that air quality improvements occur across the country. Next, to avoid the bias effect of

unobservables, we exclude from the sample all counties that report changes in their power plant’s

fleet, forest fires, or violations of NAAQS. Results are robust to excluding all of these counties from

the sample. Finally, we run a more typical TWFE-DD model on the effect of Uber on air quality.

Reassuringly, results are not statistically different from the CS-DD design.

Although this is the first article examining the relationship between Uber and air quality, its

results align with previous modeling studies in the environmental literature. For instance, a recent

article simulates the effect of ride-hailing companies on air pollution and finds that ride-hailing can

reduce PM25, NO2, and VOC by decreasing cold-start emissions and replacing old vehicles with

relatively new fleets (Ward et al., 2021a). Our study empirically complements Ward et al. (2021a)

by providing suggestive evidence of the PM25 decrease and further showing that the lump of the air

quality improvement comes from ozone reductions. Furthermore, our research also contributes to

the current policy debate on the effects of ride-hailing technologies and implies that policymakers

8In line with Ward et al. (2021a), we also uncover suggestive evidence of reductions in PM25. However,
point estimates are generally insignificant at conventional significance levels.
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should be careful when using traffic estimates as proxies for the impact of these technologies on air

quality.

2. Data

We obtained the introduction date of Uber from peer-reviewed studies like Ward et al. (2021b)

and online sources like Uber blogs, local media outlets, and google quests, where we used keywords

like “When did Uber start operations in the Bronx county NYC?” However, even after a thorough

search, there was still a modest share (less than 0.5%) of counties where we could not find the

specific introduction date. Most of these counties were small urban areas without enough media

coverage. If a county has no introduction date, we exclude it from the data set.

Panel (A) of figure 1 shows the 2017 spatial distribution of counties with and without Uber

(henceforth treated and control counties). As expected, there are more treated counties in highly

populated areas like the East Coast, California, and the Midwest. Moreover, first-treated counties

belong to large urban agglomerations like New York, Los Angeles, Chicago, San Francisco, and

Dallas. Panel (B) plots the number of counties where Uber started operations per year.

Figure 1: Descriptive statistics of Uber in the United States

Notes: A) Colored counties are all demarcations part of US metropolitan statistical areas (MSA). Control units are counties
without Uber as of 2017. B) The vertical axis in panel (B) contains the number of newly treated counties. The red horizontal
line indicates the average number of treated counties across the sample period.
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Notably, Uber’s market-driven roll-out makes first-treated counties different from later-treated

and control units. Figure 2 portrays these cross-sectional differences in income, population density,

and the transportation index with density plots.9 As expected, first treated counties have higher

incomes, are more densely populated, and use more public transportation. For instance, the average

income per capita for counties treated in 2010 is 40,000 dollars higher than counties treated in 2017

and 43,000 higher than counties in the control group.

Figure 2: Differences between treatment and control groups

Notes: This figure portrays the density distribution of average income, population density, and the transportation index. The
transportation index is the share of persons commuting to work with public transport. The vertical axis contains indicates the
treatment group, i.e., the group of counties treated in a specific year.

We use the air quality index (AQI) as a proxy for the air quality of US urban agglomerations. The

AQI normalizes the concentration of the six main criteria pollutants into a standardized measure

between zero and five hundred units. The EPA divides the AQI into six categories based on its

health risks; good for days between 0 and 50, moderate between 50 and 100, unhealthy for sensitive

groups between 100 and 150, unhealthy between 150 and 200, very harmful between 200 and 300,

and hazardous for days reporting values higher than 300.10 The AQI for each county is the highest

AQI across all measured contaminants and stations in that county.
9The transportation index is the share of persons commuting to work with public transport according to the

American Community Survey. Appendix table A.3 shows the average of the air quality index, population
density, income, and the transportation index across all periods for both treatment and control counties.

10See figure 3 of the appendix for additional information on each category.
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The data-set comes from the EPA’s yearly pre-generated data-files. It contains the annual maxi-

mum, 90th percentile, and median value of the AQI between 2000 and 2017 for all reporting counties

in the US. For the rest of the study, we focus on the maximum as this is the measurement used

by the EPA to assess the health effects of bad air quality. Furthermore, and contrary to the me-

dian and ninety percentile, the maximum AQI is informative regarding episodes of exacerbated

air pollution.11 The data-set also includes the number of days in which each county reports the

index and the total number of days within each of the six risk categories.12 Finally, we also obtain

particle-specific AQIs to examine the effects of Uber across air contaminants.

Panel (A) of figure 3 compares the intertemporal AQI value between counties with and without

Uber. This figure is slightly different from standard common trends plots because of the staggered

introduction of Uber. For instance, in cases with a unique treatment date, researchers often center

the event-time graph around treatment and look at differences in the average value of the dependent

variable before and after treatment. Unfortunately, we cannot follow this approach because we have

no unique treatment period. To fix this, we average the value of all possible event-time combinations

across treatment groups. For instance, the value at -1 corresponds to the average value one year

before the introduction date of Uber across all treatment groups, i.e., all groups of counties where

Uber was introduced in the same year.13 It is comforting to see that there is suggestive visual

evidence of common trends between treated and control units before the introduction date of Uber.

Panel (B) formally test for this pre-treatment difference between treated and control units with

11Throughout the study, we also provide results for the median and ninety percentile values of the AQI in
the appendix.

12The number of days each county publishes the AQI can change because of malfunctions, maintenance, or
administrative decisions.

13Specifically, the value of the AQI τ periods to the treatment date is: ˆAQI
Treated
τ | ˆAQI

Control
τ =

1
Nτ

6
∑

τ=−15

1
Nc ∑

c
AQIc

τ ∀ τ = (Y −G) Where Y indicates the year of the observation and G the treatment

group, i.e., the year that Uber started operations. Nτ is the number of times τ takes a specific value,
e.g., for τ =−1, there are eight different combinations of Y and G; (2009-2010, 2010-2011, .... 2016-2017).
Finally, Nc referrers to the number of counties.
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the methodology outlined in Callaway and Sant’Anna (2020).14 The figure portrays coefficients

and 95% confidence intervals for the effect of Uber on the pre-treatment difference between treated

and control units. Reassuringly, we cannot reject the common trends assumption, as there is no

significant coefficient before treatment.

Figure 3: The common trends assumption

Notes: A) Inter-temporal comparison of the air quality index (AQI) between treated and control units. The vertical axis
contains the average maximum of the AQI and the horizontal axis the time to treatment (τ). Each data-point for the treated

and control group comes from: ˆAQI
Treated
τ | ˆAQI

Control
τ = 1

Nτ

6
∑

τ=−16

1
Nc ∑

c
AQIc

τ ∀ τ = (Y −G) , where Y indicates the year of the

observation and G the treatment group. Nτ is the number of times τ takes an specific value, e.g., for τ =−1, there are eight
different combinations of Y and G; (2009-2010, 2010-2011, .... 2016-2017). Finally, Nc referrers to the number of counties. B)
Contains Callaway and Sant’Anna (2020)’s difference-in-differences design point estimates and 95% confidence intervals on the
effect of Uber on pre-treatment periods difference between treated and control stations’ AQI.

Figure 4 plots the time series of each criteria pollutant AQI (panel A) and the number of bad air

quality days by treatment group (panel B). Notably, trends between treated and control units also

look similar across air pollutants. In general, there is a downward trend in the concentration of CO,

NO2, SO2, and O3 alongside smaller changes for the particulate matters. Panel B suggests that

post-treatment air quality is significantly better across all sample groups regarding bad air quality

days. However, because several other air pollution control policies were potentially concomitant

with Uber, this should not be interpreted as a causal effect.15

14The methodology section contains a complete discussion of Callaway and Sant’Anna (2020)’s difference-
in-differences design and their procedure to estimate event-time point estimates.

15Table A.2 of the appendix contains the exact values of the AQI across years and treatment groups; the
treatment groups with the highest AQI are counties treated in 2011, 2012, and 2013.
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Figure 4: The air quality index across treated and control counties

Notes: A) Portrays the inter-temporal average maximum value of the air quality index (AQI) for all criteria pollutants. B)
Compares the number of days that the AQI surpasses one hundred units for the control and treatment groups.

3. Empirical design

Identifying the effect of Uber on air quality is not trivial because the company’s roll-out is far from

random. Wealthier and more densely populated urban centers are more likely to have Uber services

than poorer and scarcely populated agglomerations. If we do not account for these systematic

differences between treated and control counties, they can lead to biased estimates of Uber’s actual

effect. We overcome this potential source of bias by exploiting the spatio-temporal variation in

the company’s roll-out with DD designs that estimate the difference in the difference between

counties with and without Uber before and after treatment.16 The primary assumption behind the

DD strategy is that the difference between treated and control demarcations would have remained

constant in the absence of Uber and that conditional on covariates, the introduction date of Uber

is orthogonal to unobserved determinants of air quality.

Furthermore, when we estimate a DD design with more than two periods and variation in treat-

16Throughout the paper, we make no distinction between Uber black and Uber-X. Treatment only occurs
when any Uber service enters the county. However, given that both the demand and supply for Uber black
are lower than for Uber-X, table A.5 of the appendix shows the main regression results when considering
the introduction date of Uber-X as the treatment trigger. Overall, all point estimates are qualitatively
the same between the preferred and the Uber-X specification.
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ment timing, the weights used to compute ATEs with standard TWFE-DD can lead to biased esti-

mates (De Chaisemartin and d’Haultfoeuille, 2020).17 We avoid this source of bias with Callaway

and Sant’Anna (2020)’s staggered difference-in-differences methodology CS-DD.18 In our preferred

specification, treated and control counties are demarcations with and without Uber at time t; what

Callaway and Sant’Anna refer to as the “never and still not treated” control group. Other options

are to restrict the control group to never-treated counties or only consider still not treated units

where eventually Uber starts operations. We favor the “never and still not treated” approach, as

we do not have a sufficiently large pool of never-treated demarcations. However, point estimates

are robust to the other two designs. Our primary CS-DD specification takes the form:

AQIcyg = βegUbercy +λc +ωy + εct (1)

where AQIcyg is the AQI in county c at year y for all counties treated at time g. βeg is the point

estimate of interest. It marks the ATT for counties in group g at time since treatment e, where

e is the difference between the current period and the treatment date, i.e., e = y−g. Ubercy is an

indicator variable equal to one if Uber is present at year y in county c. Notice that for never treated

counties, this variable is always zero. λc are county fixed effects controlling for cross-sectional

differences between counties, and ωy are year fixed effects.

To estimate the average treatment effect for each period e, we aggregate βeg according to equation

2. In it, P[G = g|G+e =≤ T ] is the probability of being first treated at period g and βe is the average

treatment effect on the treated e periods after treatment. The idea of this estimate is in the vein

of a TWFE-DD event study design, with the advantage of avoiding the weighting issues associated

17In appendix A.2, we show the existence of this bias with the Goodman-Bacon decomposition (Goodman-
Bacon, 2021).

18A further advantage of CS-DD is that it allows us to test for the common trends assumption while consid-
ering the potential pitfalls of particular treatment timing (Sun and Abraham, 2020).
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with these models.

βe = ∑
g∈G

ω
e
gtβeg ∀ ω

e
gt = 1[g+ e ≤ T ]P[G = g|G+ e =≤ T ] (2)

Next, we determine the ATT across all groups and periods with equation 3. In it, β is the

weighted sum of βge with strictly positive weights and larger weights for larger group sizes. As with

equation 3, κ = ∑g∈G ∑
T
t=2 1[t ≥ g]P[G = g|G ≤ T ] ensures that the weights in the second sum are

positive and add up to one.

β =
1
κ

∑
g∈G

T

∑
t=2

βeg (3)

4. Results

4.1. Average Treatment Effects

Table 1 shows the effect of Uber on the maximum value of the AQI and the number of days of

bad air quality across three different specifications of control units; never and still not treated,

never treated, and still not treated.19 The ATT of Uber on the maximum value of the AQI in

the preferred “never and still not treated” specification is -10.69 or -7.3% of average pre-treatment

values. Concerning the number of days of unhealthy air quality, The ATT suggests a decrease of

2.53 days. Reassuringly, point estimates and significance values hold for the “never treated” and

“still not treated” samples. These results provide the first empirical evidence on the causal impact

of Uber on urban air quality, and imply that the introduction of Uber improves the average air

quality (proxied by the AQI) of treated counties.

19Table A.4 in the appendix presents additional results for the median and 90th percentile. Reassuringly,
results remain in line with the effect of Uber on the maximum. The same table also presents estimates
for the share of bad air quality days. The share of bad air quality days can be different if certain stations
fail to report the AQI due to maintenance, malfunctioning, or strategic behavior. As with the median
and 90th percentile, results align with the count estimates.
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Table 1: Effects of Uber on the air quality index (AQI)

Never and
still not treated

Never
treated

Still
not treated

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

−10.69∗∗∗ −2.53∗∗∗ −11.81∗∗∗ −2.94∗∗∗ −7.23∗∗∗ −2.24∗∗∗

(2.47) (0.41) (3.30) (0.52) (2.03) (0.44)

N.Counties 700 700 700 700 564 564
N.Groups 8 8 8 8 7 7
N.Periods 18 18 18 18 17 17

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1

Notes: This table contains the results of the Callaway and Sant’Anna’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the maximum value of the air quality index (AQI) and the number of days of unhealthy air quality, i.e.,
days with AQI values greater than one-hundred units. We provide results for three different control groups. The “never and
still not treated” group encompasses all counties without Uber at time t. The “never treated” group only includes counties
without Uber as of 2017. And the “still not treated” group only contains eventually treated counties without Uber at time t.
The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the county level. Significance
levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table 2 decomposes the count of bad air quality days into EPA’s risk categories, i.e, unhealthy

for sensitive groups between 100 and 150, unhealthy between 150 and 200, and hazardous for days

higher than 201.

The number of unhealthy air quality days for sensitive groups (between 100 and 150 units)

decreases by 2.1 in the preferred specification. Multiplying this estimate by the total number of

treated counties (521) leads to 1,094 fewer bad air quality episodes per year. Regarding unhealthy

days for the general population (between 150 and 200 units), Uber decreased their average number

by 0.5 days or 270 fewer episodes of bad air quality. Finally, we see no significant effects on days

with AQI values larger than 201.

4.2. Dynamic and group specific treatment effects

Figure 5 portrays the ATT for each period before and after the introduction date of Uber. Estimates

suggest that, although not statistically different from each other, the effect of Uber takes time to
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Table 2: Effect of Uber on the number of unhealthy air quality episodes by risk level

Never and
still not treated

Never
treated

Still
not treated

(100-150] (151-200] (201-] (100-150] (151-200] (201-] (100-150] (151-200] (201-]

−2.1∗∗∗ −0.5∗∗∗ −0.1 −2.5∗∗∗ −0.5∗∗∗ −0.1 −1.9∗∗∗ −0.4∗∗ −0.1
(0.4) (0.1) (0.1) (0.4) (0.1) (0.1) (0.4) (0.1) (0.1)

N.Counties 702 702 702 702 702 702 566 566 566
N.Groups 8 8 8 8 8 8 7 7 7
N.Periods 18 18 18 18 18 18 17 17 17

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1 1 1 1

Notes: This table contains the results of the Callaway and Sant’Anna’s difference-in-differences (CS-DD) on the impact of
Uber on the number of days with air quality index (AQI) values within three exposure intervals; (100-150], (151-200], and
201+. The AQI standardizes the concentration of criteria contaminants into a single scale running between 0 and 500 units.
We provide results for three different control groups. The “never and still not treated” group encompasses all counties without
Uber at time t. The “never treated” group only includes counties without Uber as of 2017. And the “still not treated” group
only contains eventually treated counties without Uber at time t. The CS-DD model controls for county and year fixed effects
and cluster standard errors at the county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

materialize.20 Regarding pre-treatment ATTs, it is reassuring to see overall statistically insignificant

coefficients.

Figure 5: Dynamic estimates for the effect of Uber on the air quality index

Notes: This figure portrays seasonal point estimates and 95% confidence intervals on the impact of Uber on the maximum and
ninety percentile values of the air quality index (AQI), as well as on the number of unhealthy air quality episodes, i.e., days
with AQI values higher than one hundred units. The AQI standardizes the concentration of criteria contaminants into a single
scale running between 0 and 500 units. The treated group contains all counties where Uber started operations between 2010
and 2017. The control group refers to all counties without Uber at time t. The Callaway and Sant’Anna’s
difference-in-differences (CS-DD) model controls for county and year fixed effects. Standard errors are clustered at the county
level.

20Figure 4 of the appendix contains equivalent estimates for the median, 90th percentile, and share of days
with bad air quality.
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Next, figure 6 contains the ATT for each treatment group, i.e., each group of counties treated in

the same year. Although only statistically significant for counties treated between 2010 and 2013, we

see negative coefficients across all samples regarding the maximum value of the AQI. Finding higher

estimates for early treated counties makes sense as these counties were on average more densely

populated, wealthier, and polluted than small demarcations treated from 2014 onwards (See tables

A.2 and A.3 of the data section in the appendix). For the number of days of bad air quality, all

point estimates are negative, and significant between 2011 and 2013.

Figure 6: Group Specific Average Treatment Effect on the Treated for the effect of Uber on the air quality
index

Notes: This figure portrays group-specific point estimates on the impact of Uber on the maximum-AQI and the number of
days of bad air quality. Each group corresponds to all counties where Uber started operations in the same year. The AQI
standardizes the concentration of criteria contaminants into a single scale running between 0 and 500 units. The vertical lines
are 95% confidence intervals. The treated group contains all counties where Uber started operations between 2010 and 2017.
The control group refers to all counties without Uber at time t. The Callaway and Sant’Anna’s difference-in-differences
(CS-DD) model controls for county and year fixed effects. Standard errors are clustered at the county level.

4.3. Seasonal effects

Seasonal estimates can provide information on the mechanisms through which Uber improves air

quality. For instance, ozone’s seasonal behavior deviates from other criteria pollutants because of

its dependence on solar radiation. If the air quality improvement relates to O3, we should uncover

higher effects during the summer months.
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Equation 4 shows the empirical strategy behind the seasonal estimates. In it, AQIs
cyg is the

maximum value of the AQI for county c part of group g at time y and season s. The estimate of

interest, β s
eg, conveys the seasonal effect of Uber on the AQI.

AQIs
cyg = β

s
egUbercy +λc +ωy + εct (4)

Figure 7 shows the seasonal effects of Uber on the maximum value of the AQI and the number

of bad air quality days.

Figure 7: Seasonal effects of Uber on the air quality index (AQI)

Notes: This figure portrays the seasonal results of Callaway and Sant’Anna’s difference-in-differences (CS-DD) design on the
impact of Uber on the maximum AQI and the number of unhealthy air quality episodes, i.e., days with AQI values higher than
100 units. The AQI standardizes the concentration of criteria contaminants into a single scale running between 0 and 500
units. Treated and control counties refer to counties with and without Uber at time t. The CS-DD controls for county and
year fixed effects. Standard errors are clustered at the county level.

Uber decreases the AQI during the spring, summer, and fall months by 3.02, 14.56, and 9.24

units. Notably, although not statistically different from the other seasons, the summer estimate is

relatively larger. Concerning the number of days of bad air quality, estimates suggest a statistically

significant reduction for autumn and summer. During the summer, bad air quality episodes decrease

by 2.2 days. This summer reduction leads to 2,297 fewer summer days of bad air quality across all

treated counties. Interestingly, the summer estimate is statistically larger than the estimates for
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the other seasons, suggesting that O3 does play a role in the air quality improvement.21

4.4. Heterogeneous effect by air pollutant

This section estimates the effect of Uber on the concentration of the two most harmful criteria

contaminants; O3 and PM25. Examining the impact of Uber on O3 will allow us to disentangle if

air quality effect comes from changes in this important secondary air contaminant. Furthermore,

because changes in PM25 are closely associated with variations in traffic-related emissions, looking

at their fluctuation allows us to disentangle the transit mechanism. Finally, because of the critical

relationship between NO2 and O3, we also provide estimates for the latter. Table 3 contains the

results of each pollutant-specific regression.

Table 3: Effect of Uber on the maximum AQI for selected contaminants

Never and
still not treated

Never
treated

Still
not treated

NO2 O3 PM25 NO2 O3 PM25 NO2 O3 PM25

−1.23 −6.24∗∗∗ −3.17 −0.93 −5.90∗∗ −4.93 −0.42 −7.32∗∗∗ 2.68
(2.61) (1.70) (2.78) (3.04) (1.87) (3.44) (2.47) (1.80) (2.31)

N.Counties 249 565 533 249 565 533 164 485 423
N.Groups 8 8 8 8 8 8 7 7 7
N.Periods 18 18 18 18 18 18 17 17 17

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1 1 1 1

Notes: This table contains the results of the Callaway and Sant’Anna’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the maximum value of the air quality index (AQI) across air pollutants. We provide results for three
different control groups. The “never and still not treated” group encompasses all counties without Uber at time t. The “never
treated” group only includes counties without Uber as of 2017. And the “still not treated” group only contains eventually
treated counties without Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are
clustered at the county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

We only find significant point estimates for O3. In the preferred specification, Uber decreases

the AQI of ozone by 6.24 units.22 Conversely, we find no statistically significant effects for NO2 or
21Figure 5 in the appendix portrays point estimates and 95% confidence intervals for the EPA risk categories.
22In additional results, table A.6 of the appendix shows the effect on the number of days of bad air quality;
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PM25.

Next, figure 8 shows the dynamic ATT for the maximum AQI value of O3, PM25, and NO2. Post-

treatment estimates for O3 are all negative with significant coefficients for e∈ 1,2,4. For PM25, there

is also suggestive evidence of a reduction, possibly due to reductions in cold-start emissions (Ward

et al., 2021a). Finally, for NO2 we do not find any significant effect, which may be due to the small

number of stations measuring NO2 across the US.

Figure 8: Dynamic average treatment effects of Uber

Notes: This figure portrays point estimates and 95% confidence intervals of Callaway and Sant’Anna’s difference-in-differences
(CS-DD) design on the impact of Uber on the maximum air quality index (AQI) value for nitrogen dioxides (NO2),
ground-level ozone (O3), and fine particulate matter (PM25). The AQI standardizes the concentration of criteria contaminants
into a single scale running between 0 and 500 units. The treated and control groups contain all counties with and without
Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the county level.

4.5. Robustness checks

4.5.1. Regional heterogeneity

Even though we see an average reduction in the AQI, this does not necessarily mean that Uber

improves the air quality for all treated counties. In this section we explore if our results hold across

results show that the only particle with fewer days of bad air quality is O3. Table A.7 shows the impact of
Uber on CO, PM10, and SO2; we find no significant estimate for any of these contaminants. Finally, table
A.8 presents results for the 90th percentile value of O3, NO2, and PM25; as expected, the only significant
effect relates to O3.
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US census regions. 23 The map in figure 9 shows the point estimates and standard errors of running

our preferred specification for each region.

Figure 9: Effect of Uber on the maximum value of the air quality index across census regions

Notes: This map portrays point estimates and standard errors (in parenthesis) of a Callaway and Sant’Anna’s
difference-in-differences (CS-DD) design on the impact of Uber on the maximum-air quality index (AQI) across all nine US
census regions. The AQI standardizes the concentration of criteria contaminants into a single scale running between 0 and 500
units. The treated and control groups are urban counties with and without Uber at time t. The CS-DD model controls for
county and year fixed effects. Standard errors are clustered at the county level.

Results show reductions in the AQI across all census regions. Specifically, we find five percent

significant declines in New England, Mid-Atlantic, South Atlantic, East North Central, West North

Central, and Mountain, ten percent for West North Central, and statistically insignificant effects

for the Pacific and East South Central Regions. Thus, even though we find no qualitative differ-

ences in the impact of Uber on air quality, we encounter differences in the intensity and statistical

significance of point estimates. For instance, the effect of Uber appears to be considerably higher

in the Mid-Atlantic and West South Central states, suggesting that we need further research on the

regional or city-specific mechanisms behind the relationship between ride-hailing technologies and
23Specifically, the US Census Buro divides the country into nine regions; New England, Mid-Atlantic (MA),

South-Atlantic (SA), East North Central (ENC), East South Central (ESC), West North Central (WNC),
West South Central (WSC), Mountains, and Pacific.
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air quality. Yet, finding consistently negative estimates across census regions reduce concerns that

high reductions in a subset of urban agglomerations drive our results.24

4.5.2. Unobserved confounders

Even though we cannot reject the common trends assumption with our main sample, this does

not necessarily imply that the common trends assumption holds after treatment. For instance,

unobservable covariates can potentially bias point estimates if they systematically correlate with

the introduction date of Uber. This section examines the robustness of our results to three well-

known sources of air pollution changes in the US; changes in the fleet of fossil-fuel power plants,

forest fires, and the violation of NAAQS.25 For this, we exclude from the treatment and control

groups all periods after a county reported changes in its power plants fleet, had a forest fire of more

than 2,000 acres, or violated the North American Air Quality Standards (NAAQS). Furthermore,

we also show a specification excluding neighboring demarcations because of the spread-out behavior

of most air pollutants. Table 4 shows the results of each robustness exercise.

Excluding counties with changes in the power fleet, forest fires, or violations of NAAQS leads

to qualitatively similar results to the main specification. Furthermore, table A.9 of the appendix

presents the same estimates for the count of days with AQI values larger than 100 units. Overall,

they mimic the estimates from table 4.

24Figure 6 of the appendix portrays the same exercise with the number of days of bad air quality. Point
estimates remain negative although less significant than for the maximum AQI because there is more
limited variation in the number of bad air quality days than in the raw AQI.

25The Energy Information Administration (EIA) provides detailed information on the status of power gen-
erating units (EIA, 2021). We extract forest-fire data from the US Department of Agriculture (USDA,
2021) and the United States Geological Service (USGS, 2021). For NAAQS violations, we use the EPA’s
Green Book (EPA, 2021b).
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Table 4: Effect of Uber on the air quality index (AQI) for counties with no power fleet changes, forest fires
larger than 2,000 acres, or violations of NAAQS

Power fleet
changes

Forest
fires

O3 violations of
NAAQS

PM25 violations of
NAAQS

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

−18.33∗ −5.62∗ −19.63∗ −34.90∗ −7.17∗ −8.93 −12.87∗∗∗ −16.86∗∗∗

(8.60) (2.48) (9.01) (16.67) (3.42) (4.63) (3.67) (4.00)

N.Counties 697 693 700 687 698 698 698 696
N.Groups 8 8 8 8 8 8 8 8
N.Periods 18 18 18 18 18 18 18 18

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the maximum value of the air quality index (AQI). Treated and control counties are those with and without
Uber at time t. We provide results for three different samples: Power fleet changes exclude all counties reporting a change in
their fleet of fossil-fuel power plants; Forest fires exclude all counties that reported a forest fire larger than 2,000 acres within
our observation period; and NAAQS violations excludes all counties that violated NAAQS. The CS-DD model controls for
county and year fixed effects and cluster standard errors at the county level. Significance levels denoted by ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05.

4.5.3. Conditional parallel trends

This section departs from the unconditional parallel trends assumption we kept throughout the study

and shows results conditioning the trends on average pre-treatment income, population density, and

temperature. Conditioning on observables is relevant if we believe that covariate specific time-trends

are modifying the value of the AQI. In our case, first-treated counties are, on average, more densely

populated and wealthier than latter-treated demarcations. If the inter-temporal path of the AQI

depends on either income or population density, conditioning the parallel trends on these covariates

is potentially better. Table 5 shows the point estimates of the conditional trends models for the

maximum AQI and the number of unhealthy air quality days.

Reassuringly, conditioning the parallel trends on income and temperature leads to point estimates

statistically equivalent to the preferred specification. Conditioning on population density, on the

other hand, does decrease the size of the coefficient for the maximum value of the AQI. However,

the qualitative effect is still negative and statistically different from zero.
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Table 5: Effect of Uber on the air quality index (AQI) with conditional parallel trends

Conditional on
income

Conditional on
Pop. Density

Conditional on
Temperature

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

−10.51∗∗∗ −2.89∗∗∗ −4.68∗ −1.85∗∗ −13.05∗∗∗ −3.05∗∗∗

(2.66) (0.62) (2.24) (0.68) (2.84) (0.56)

N.Counties 694 694 700 700 680 680
N.Groups 8 8 8 8 8 8
N.Periods 18 18 18 18 14 14

Notes: This table contains the results of the Callaway and Sant’Anna’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the maximum value of the AQI and the number of days of unhealthy air quality, i.e., days with AQI values
greater than one-hundred units. We provide results conditioning parallel trends on three different variables; income,
population density, and average temperature. The treated and control groups are counties with and without Uber at time t.
The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the county level. Significance
levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

4.5.4. Two ways fixed effects

In this section, we look at our estimates robustness to the more typical TWFE-DD design. Using

TWFE-DD to estimate the effect of Uber on air quality has the advantage that it allows us to

incorporate time-varying covariates.

Equation 5 shows the econometric specification of the TWFE-DD model. In it, AQIcy is the

value of the AQI (or the number of days of bad air quality) for county c at year y. Ubercy is an

indicator dummy equal to one if Uber operates in county c at time y. β contains the point estimate

of interest, i.e., the effect of Uber on air quality. Ψcy controls for exogenous shocks to the air quality

index like forest fires, violations of NAAQS, and power plants openings and closures. Wcy further

adds weather controls in the form of temperature, relative humidity, wind speed, and atmospheric

pressure. Finally, λc and ωy are county and year fixed effects.

AQIcy = β1Ubercy +δΨcy + γWcy +λc +ωy + εct (5)
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Table 6 contains the results of the TWFE-DD model across three specifications: (1) only controls

for county and year fixed effects; (2) adds the matrix of exogenous shocks to the model; and (3)

includes weather covariates. It is comforting to see that the effect of Uber on the AQI is not

statistically different across specifications. Furthermore, point estimates are also quantitatively

equivalent to the CS-DD model. In the raw specification, Uber decreases the maximum value of

the AQI by 9.06 units and the number of bad air quality days by 3.26.

Table 6: Two-way fixed effects difference-in-differences (TWFE-DD) estimates on the effect of Uber on the
Air quality index (AQI)

Maximum
Air Quality Index

Bad
Air Quality Days

(1) (2) (3) (1) (2) (3)

ATT −9.06∗∗∗ −7.70∗∗∗ −8.13∗∗∗ −3.26∗∗∗ −1.74∗∗ −1.93∗∗∗

(1.97) (1.96) (1.84) (0.59) (0.59) (0.44)
Power Plant Closure −0.30 −0.88 0.92 0.70

(1.75) (1.64) (0.79) (0.66)
Power Plant Opening 15.98∗ 13.20 5.52∗∗ 7.00∗∗∗

(8.08) (7.72) (2.05) (0.97)
Forest Fire −0.09 −1.30 0.98∗ 0.67

(1.71) (1.80) (0.40) (0.36)
NAAQS Violations −6.91∗∗∗ −4.68∗ −8.18∗∗∗ −7.39∗∗∗

(2.00) (1.90) (0.95) (0.84)
Temperature 0.29∗ 0.07∗

(0.12) (0.03)

No.Obs 11,192 11,192 8,012 11,192 11,192 8,012

Notes: This table contains the results of the Two-way fixed effects difference-in-differences (TWFE-DD) estimates of the
impact of Uber on the maximum value of the AQI and the number of days of unhealthy air quality, i.e., days with AQI values
greater than one-hundred units. Column (1) only controls for county and year fixed effects. Column (2) adds the matrix of
exogenous shocks to the model, i.e., forest fires, violations of NAAQS, and changes in the composition of the power plant’s
fleet. And column (3) includes weather covariates in the form of temperature, relative humidity, wind speed, and atmospheric
pressure. Standard errors are clustered at the county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Another interesting result is the decrease in the AQI after a county violates NAAQS, confirming

previous literature on the effectiveness of policies related to the America’s Clean Air Act (Currie

and Walker, 2019). Additionally, we see a five and seven percent significant increase in the second

and third specifications after opening new power facilities.
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5. Conclusion

Because of the complexity of the transportation system and the intricate relationship between air

pollutants in the lower atmosphere, it is challenging to assess the air quality effects of Uber. In

this study, we estimate this effect by looking at Uber’s impact on the AQI, a well-known proxy for

average air quality that incorporates information on the concentration of all six criteria pollutants

measured by the EPA.

We infer causality by leveraging the spatio-temporal variation in the introduction date of Uber

with CS-DD designs. In layman’s terms, we compare the value of the AQI on treated and non-

treated demarcations before and after Uber started operations.

Our findings show that Uber improves air quality mainly through its effect on ozone (although

we also find suggestive evidence for a decrease in PM25). We perform several robustness tests

to check the stability of our results across different control samples, regions, and specifications

where we exclude all counties reporting forest fires, power plant closures, and violations of NAAQS.

Additionally, our estimates are also robust to TWFE-DD designs and conditioning the parallel

trends with income, population density, and temperature.

These results stand contrary to current political claims on the adverse effects of Uber on air

pollution. The reason for this discrepancy is that intuitively, one could think that air pollution

increases with traffic. However, this is not necessary because of three main reasons. First, more Uber

cars do not imply higher emissions when these new vehicles substitute high emitting taxis or private

cars. Second, even if Uber replaces some share of public transportation rides, the pollution question

remains open if the effect of this reduction on air pollution is less significant than the influence of

substituting old taxis and private vehicles with newer Uber cars. Third, even if Uber increases the

concentration of combustion contaminants like nitrogen dioxides, the inverse relationship between

these particles and atmospheric ozone in urban agglomerations could improve air quality in regions
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with high ozone levels.

Our findings provide a holistic picture of the air quality effects of Uber with several relevant policy

implications for the regulation of these disruptive technologies. We recommend that researchers

and policymakers be careful when using the findings of transportation studies on the effects of

ride-hailing technologies as evidence of their pernicious effects on air quality. In the end, its impact

on the transportation system is only one piece of a more complex puzzle. Future studies could

expand this work by looking at the air pollution effects of introducing electric vehicles for ride-

hailing services, the impact of these technologies on greenhouse gas emissions, and heterogeneous

effects across different urban centers.
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A. Appendix

For Online Publication

A.1. Introduction

Table A.1: Effect of Uber on the share of public transport and total number of available private cars

Share of
public transit commuters

Total
number of available private cars

Never and
still not treated

Never
treated

Still
not treated

Never and
still not treated

Never
treated

Still
not treated

0.08 0.12∗ 0.08 27,522.08∗∗∗ 24,685.04∗∗∗ 30,867.30∗∗∗

(0.05) (0.06) (0.05) (5714.24) (6605.90) (4481.16)

N.Counties 700 700 564 538 538 479
N.Groups 8 8 7 7 7 6
N.Periods 18 18 17 8 8 7

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1

Notes: This table contains the results of the Callaway and Sant’Anna (2020)’s difference-in-differences design (CS-DD) on the
impact of Uber on the share of workers using public transit for their daily commute (left) and the total count of available
private cars per county (right). Both variables come from the American Community Survey. Treated counties are those where
Uber started operations between 2010 and 2017. Control counties are those without Uber at time t. The CS-DD model
controls for county and year fixed effects. Standard errors are clustered at the county level. Significance levels denoted by
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Figure 1: Number of monthly trips in Chicago and New York City
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A.2. Empirical design

Goodman-Bacon (2021) shows that the TWFE-DD coefficient is a weighted average of all possible

group-period DD estimators across three groups; earlier vs. later treated, later vs. earlier treated,

and treated vs. untreated. Figure 2 depicts the decomposition proposed by Goodman-Bacon

(2021) on the effect of Uber on the maximum value of the air quality index. The vertical axis

shows the estimates for each 2x2 DD and its corresponding weights on the horizontal axis.26 The

solid horizontal lines depict the TWFE-DD estimates of each comparison and the dotted lines the

weighted average TWFE-DD estimate.

Figure 2: Goodman-Bacon decomposition on the effects of Uber on the air quality index

The figure shows that TWFE-DD the comparison of later vs. earlier and earlier vs. later treated

counties can potentially bias the TWFE-DD estimates. For instance, in retrospect, we can see that

the positive point estimates from later vs. earlier treated arise because already-treated counties

experience substantial decreases in pollutant levels years after Uber. Using their post-treatment

outcomes as a control group for stations treated in later years underestimates the true Uber impact

on the Later Treated.

26Each estimate weight comes from the size of the treatment group for each 2x2 DD comparison.
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A.3. Data

Figure 3: Levels of concern for the general population based on the value of the air quality index (AQI)

Notes: https://www.airnow.gov/aqi/aqi-basics/

Table A.2: Descriptive statistics of air quality index (AQI) across treatment and control groups

2010 2011 2012 2013 2014 2015 2016 2017 Avg. Treated Control

Full sample
Maximum AQI 137 145 167 148 142 134 137 125 142 120
90th Perc. AQI 68 72 82 82 76 71 70 65 73 67

%Unhealthy Days 3 4 6 6 5 3 3 2 4 3
Pre-treatment

Maximum AQI 140 156 177 160 149 137 140 125 148 -
90th Perc. AQI 68 78 89 89 80 73 72 66 77 -

%Unhealthy Days 3 5 7 7 6 4 4 2 5 -
Post-treatment

Maximum AQI 132 128 147 116 118 120 113 114 124 -
90th Perc. AQI 68 62 70 62 62 58 55 55 62 -

%Unhealthy Days 2 2 3 1 2 1 1 1 2 -

N.obs 144 1,009 1,007 999 3,807 1,073 977 1,039 1,257 1,499
N.Counties 8 58 57 56 219 64 59 64 73 140

Pre-treatment Periods 10 11 12 13 14 15 16 17 - -
Post-treatment Periods 8 7 6 5 4 3 2 1 - -

Notes: This table shows the average of the maximum and ninety percentile values of the AQI, as well as the share of days
when counties report episodes of unhealthy air quality for one control and eight treatment groups. The AQI standardizes the
concentration of criteria contaminants into a single scale running between 0 and 500 units. Unhealthy episodes refer to days
with AQI values beyond 100 units. Each treatment group contains all counties where Uber began operations in that particular
year; e.g., the 2010 treatment group only includes counties treated in 2010. The control group refers to all counties without
Uber as of 2017. Pre-treatment and Post-treatment values relate to the average in treated counties before and after the
introduction date of Uber.
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Table A.3: Descriptive Socio-demographic characteristics across treatment and control groups

2010 2011 2012 2013 2014 2015 2016 2017 Avg. Treated Control

Full sample
Income per capita (Ths.) 85 65 53 51 47 44 42 45 54 42

Population density 2,994 5,934 1,204 625 494 294 204 210 1,495 247
Pub. Trans. Index 11 13 3 1 1 1 1 1 4 1

Pre-treatment
Income per capita (Ths.) 85 65 53 51 47 44 42 45 54 -

Population density 2,994 5,893 1,215 625 495 296 205 211 1,492 -
Pub. Trans. Index 11 13 3 1 1 1 1 1 4 -

Post-treatment
Income per capita (Ths.) 85 66 53 51 47 44 42 45 54 -

Population density 2,994 6,000 1,182 624 492 286 195 198 1,496 -
Pub. Trans. Index 11 13 3 1 1 1 1 1 4 -

Notes: This table shows the income per capita, population density, and public transportation index for one control and eight
treatment groups. The public transportation index indicates the percentage of persons commuting by public transit (U.S.
Census Bureau, 2015-2019). Each treatment group contains all counties where Uber began operations in that particular year;
e.g., the 2010 treatment group only includes counties treated in 2010. The control group refers to all counties without Uber as
of 2017. Pre-treatment and Post-treatment values relate to the average in treated counties before and after the introduction of
Uber.

A.4. Results

Table A.4: Effects of Uber on the air quality index (AQI) for additional variables

Never and
still not treated

Never
treated

Still
not treated

Median
AQI

90th percentile
AQI

% of bad
days

Median
AQI

90th percentile
AQI

% of bad
days

Median
AQI

90th percentile
AQI

% of bad
days

−0.9∗ −4.2∗∗∗ −0.8∗∗∗ −1.6∗∗∗ −5.8∗∗∗ −0.9∗∗∗ −0.2 −2.5∗∗∗ −0.7∗∗∗

(0.4) (0.7) (0.1) (0.6) (1.0) (0.1) (0.4) (0.7) (0.1)

N.Counties 700 700 700 700 700 700 564 564 564
N.Groups 8 8 8 8 8 8 7 7 7
N.Periods 18 18 18 18 18 18 17 17 17
W.test 1 1 1 1 1 1 1 1 1

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences design (CS-DD) estimates
of the impact of Uber on the median and 90th percentile value of the AQI as well as on the share of days with unhealthy air
quality levels, i.e., days with AQI values greater than one-hundred units. We provide results for three different control groups.
The “never and still not treated” group encompasses all counties without Uber at time t. The “never treated” group only
includes counties without Uber as of 2017. And the “still not treated” group only contains eventually treated counties without
Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the county level.
Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table A.5: Effects of Uber on the air quality index (AQI) (Treatment trigger restricted to the introduction
date of Uber X)

Never and
still not treated

Never
treated

Still
not treated

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

Maximum
AQI

Unhealthy
Days

−10.00∗∗∗ −1.71∗∗∗ −12.69∗∗∗ −2.41∗∗∗ −5.00 −1.17∗∗

(2.67) (0.44) (3.61) (0.56) (2.73) (0.44)

N.Counties 702 702 702 702 564 564
N.Groups 8 8 8 8 7 7
N.Periods 18 18 18 18 17 17

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber-X on the maximum value of the AQI and the number of days of unhealthy air quality, i.e., days with AQI
values greater than one-hundred units. We provide results for three different control groups. The “never and still not treated”
group encompasses all counties without Uber-X at time t, the “never treated” group only includes counties without Uber-X as
of 2017, and the “still not treated” group only contains eventually treated counties without Uber-X at time t. The CS-DD
model controls for county and year fixed effects. Standard errors are clustered at the county level. Significance levels denoted
by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Figure 4: Dynamic estimates for the effect of Uber on the air quality index (AQI)

Notes: This figure portrays event-time point estimates on the impact of Uber on the median and 90th percentile value of the
AQI as well as on the share of days with unhealthy air quality levels, i.e., days with AQI values greater than one-hundred
units. The AQI standardizes the concentration of criteria contaminants into a single scale running between 0 and 500 units.
The vertical lines are 95% confidence intervals. The treated group contains all counties where Uber started operations between
2010 and 2017. The control group refers to all counties without Uber at time t. The CS-DD model comes from the
methodology outlined in Callaway and Sant’Anna (2020), and controls for county and year fixed effects. Standard errors are
clustered at the county level.
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Figure 5: Seasonal effect of Uber on the number of days of bad air quality by risk level

Notes: This figure portrays the seasonal results of the Callaway and Sant’Anna’s difference-in-differences (CS-DD) design on
the impact of Uber on the number days of unhealthy air quality episodes. The air quality index (AQI) standardizes the
concentration of criteria contaminants into a single scale running between 0 and 500 units. Unhealthy air quality episodes refer
to days with AQI values beyond one hundred. The treated group contains all counties where Uber started operations between
2010 and 2017. The control group refers to all counties without Uber as of 2017. The CS-DD model controls for county and
year fixed effects. Standard errors are clustered at the county level.

Table A.6: Effect of Uber on the number of days of bad air quality for selected contaminants

Never and
still not treated

Never
treated

Still
not treated

NO2 O3 PM25 NO2 O3 PM25 NO2 O3 PM25

0.02 −2.40∗∗∗ −0.37 0.01 −2.61∗∗∗ −0.61 0.01 −2.40∗∗∗ 0.13
(0.03) (0.40) (0.31) (0.04) (0.46) (0.36) (0.03) (0.37) (0.35)

N.Counties 249 565 533 249 565 533 164 485 423
N.Groups 8 8 8 8 8 8 7 7 7
N.Periods 18 18 18 18 18 18 17 17 17

Parallel trends
Wald Test
(P-value)

1 1 1 1 1 1 1 1 1

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the number of days of bad air quality, i.e., days with an air quality index (AQI) value higher than 100 units.
We provide results for three different control groups. The “never and still not treated” group encompasses all counties without
Uber at time t, the “never treated” group only includes counties without Uber as of 2017, and the “still not treated” group
only contains eventually treated counties without Uber at time t. The CS-DD model controls for county and year fixed effects.
Standard errors are clustered at the county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table A.7: Effect of Uber on the maximum air quality index (AQI) for selected contaminants

Never and
still not treated

Never
treated

Still
not treated

CO PM10 SO2 CO PM10 SO2 CO PM10 SO2

−4.52 −31.50 −9.11 −4.68 −32.18 −13.28 −2.13 −27.34 −4.65
(7.94) (24.66) (7.10) (8.26) (25.81) (7.65) (5.29) (27.49) (6.70)

N.Counties 190 366 312 190 366 312 45 160 147
N.Groups 7 8 8 7 8 8 6 7 7
N.Periods 18 18 18 18 18 18 17 17 17

Parallel trends
Wald Test
(P-value)

0 1 1 0 1 1 1 1 1

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the maximum value of the AQI for selected contaminants. We provide results for three different control
groups. The “never and still not treated” group encompasses all counties without Uber at time t, the “never treated” group
only includes counties without Uber as of 2017, and the “still not treated” group only contains eventually treated counties
without Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the
county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table A.8: Effect of Uber on the 90th percentile value of the air quality index (AQI) for selected
contaminants

Never and
still not treated

Never
treated

Still
not treated

NO2 O3 PM25 NO2 O3 PM25 NO2 O3 PM25

−3.12 −3.83∗∗∗ −0.20 −3.85 −4.73∗∗∗ −0.64 −1.00 −2.97∗∗∗ 0.95
(1.93) (0.81) (0.69) (2.00) (1.15) (0.88) (1.94) (0.80) (0.75)

N.Obs 249 565 533 249 565 533 164 485 423
N.Groups 8 8 8 8 8 8 7 7 7
N.Periods 18 18 18 18 18 18 17 17 17

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the 90th percentile value of the AQI for selected contaminants. We provide results for three different control
groups. The “never and still not treated” group encompasses all counties without Uber at time t, the “never treated” group
only includes counties without Uber as of 2017, and the “still not treated” group only contains eventually treated counties
without Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the
county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table A.9: Effect of Uber on the number of bad air quality days for counties with no power fleet changes,
forest fires larger than 2,000 acres, or violations of NAAQS

Power fleet
changes

Forest
fires

O3 violations of
NAAQS

PM25 violations of
NAAQS

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

Rep.
County

Rep. and
Neighboring

Counties

−3.05∗∗∗ −1.23∗∗ −3.26∗∗∗ −5.00∗∗∗ −1.11∗ −1.07 −2.20∗∗∗ −2.64∗∗∗

(0.71) (0.47) (0.63) (1.13) (0.51) (0.58) (0.49) (0.55)

N.Counties 697 693 700 688 698 698 698 696
N.Groups 8 8 8 8 8 8 8 8
N.Periods 18 18 18 18 18 18 18 18

Notes: This table contains the results of Callaway and Sant’Anna (2020)’s difference-in-differences (CS-DD) estimates of the
impact of Uber on the number of days of bad air quality, i.e., days with an air quality index (AQI) value higher than 100 units.
Treated and control counties are those with and without Uber at time t. We provide results for three different samples: Power
fleet changes exclude all counties reporting a change in their fleet of fossil-fuel power plants; Forest fires exclude all counties
that reported a forest fire larger than 2,000 acres within our observation period; and NAAQS violations excludes all counties
that violated North American Air Quality Standards (NAAQS). The CS-DD model controls for county and year fixed effects.
Standard errors are clustered at the county level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Figure 6: Effect of Uber on the number of bad air quality episodes across census regions

Notes: This map portrays point estimates and standard errors in parenthesis of a Callaway and Sant’Anna’s
difference-in-differences (CS-DD) design on the impact of Uber on the number of days of bad air quality, i.e., days with
maximum air quality index (AQI) values higher than 100 units. The AQI standardizes the concentration of criteria
contaminants into a single scale running between 0 and 500 units. The treated and control groups contain all counties with
and without Uber at time t. The CS-DD model controls for county and year fixed effects. Standard errors are clustered at the
county level.
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